Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 15(3)2023 03 11.
Article in English | MEDLINE | ID: covidwho-2267383

ABSTRACT

A higher prevalence of SARS-CoV-2 infections in animals that have close contact with SARS-CoV-2-positive humans ("COVID-19 households") has been demonstrated in several countries. This prospective study aimed to determine the SARS-CoV-2 prevalence in animals from Swiss COVID-19 households and to assess the potential risk factors for infection. The study included 226 companion animals (172 cats, 76.1%; 49 dogs, 21.7%; and 5 other animals, 2.2%) from 122 COVID-19 households with 336 human household members (including 230 SARS-CoV-2-positive people). The animals were tested for viral RNA using an RT-qPCR and/or serologically for antibodies and neutralizing activity. Additionally, surface samples from animal fur and beds underwent an RT-qPCR. A questionnaire about hygiene, animal hygiene, and contact intensity was completed by the household members. A total of 49 of the 226 animals (21.7%) from 31 of the 122 households (25.4%) tested positive/questionably positive for SARS-CoV-2, including 37 of the 172 cats (21.5%) and 12 of the 49 dogs (24.5%). The surface samples tested positive significantly more often in households with SARS-CoV-2-positive animals than in households with SARS-CoV-2-negative animals (p = 0.011). Significantly more animals tested positive in the multivariable analysis for households with minors. For cats, a shorter length of outdoor access and a higher frequency of removing droppings from litterboxes were factors that were significantly associated with higher infection rates. The study emphasizes that the behavior of owners and the living conditions of animals can influence the likelihood of a SARS-CoV-2 infection in companion animals. Therefore, it is crucial to monitor the infection transmission and dynamics in animals, as well as to identify the possible risk factors for animals in infected households.


Subject(s)
COVID-19 , Humans , Animals , Dogs , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Prospective Studies , Family Characteristics , Risk Factors
2.
Viruses ; 15(1)2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2200885

ABSTRACT

In human beings, there are five reported variants of concern of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). However, in contrast to human beings, descriptions of infections of animals with specific variants are still rare. The aim of this study is to systematically investigate SARS-CoV-2 infections in companion animals in close contact with SARS-CoV-2-positive owners ("COVID-19 households") with a focus on the Delta variant. Samples, obtained from companion animals and their owners were analyzed using a real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and next-generation sequencing (NGS). Animals were also tested for antibodies and neutralizing activity against SARS-CoV-2. Eleven cats and three dogs in nine COVID-19-positive households were RT-qPCR and/or serologically positive for the SARS-CoV-2 Delta variant. For seven animals, the genetic sequence could be determined. The animals were infected by one of the pangolin lineages B.1.617.2, AY.4, AY.43 and AY.129 and between zero and three single-nucleotide polymorphisms (SNPs) were detected between the viral genomes of animals and their owners, indicating within-household transmission between animal and owner and in multi-pet households also between the animals. NGS data identified SNPs that occur at a higher frequency in the viral sequences of companion animals than in viral sequences of humans, as well as SNPs, which were exclusively found in the animals investigated in the current study and not in their owners. In conclusion, our study is the first to describe the SARS-CoV-2 Delta variant transmission to animals in Switzerland and provides the first-ever description of Delta-variant pangolin lineages AY.129 and AY.4 in animals. Our results reinforce the need of a One Health approach in the monitoring of SARS-CoV-2 in animals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Dogs , Humans , COVID-19/veterinary , Immunity , Pangolins , Pets , SARS-CoV-2/genetics , Switzerland/epidemiology , Cats
SELECTION OF CITATIONS
SEARCH DETAIL